

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 2765–2768

Three anti-tumor saponins from Albizia julibrissin

Lu Zheng, a,b Jian Zheng, Yuying Zhao, Bin Wang, Lijun Wub and Hong Liang A,*

^aSchool of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, People's Republic of China ^bDepartment of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

Received 30 November 2005; revised 19 January 2006; accepted 2 February 2006 Available online 28 February 2006

Abstract—Three new triterpenoid saponins, julibroside J_{29} (1), julibroside J_{30} (2), and julibroside J_{31} (3), were isolated from the stem bark of *Albizia julibrissin* Durazz. (Leguminosae) by using chromatographic method. Their structures were established by spectroscopic methods. Compounds 1, 2, and 3 displayed significant anti-tumor activities in vitro against PC-3M-1E8, HeLa, and MDA-MB-435 cancer cell lines at $10 \,\mu\text{M}$ assayed by SRB and MTT methods. © 2006 Elsevier Ltd. All rights reserved.

The stem bark of Albizia julibrissin (Leguminosae) has been recorded in Chinese Pharmacopoeia as a sedative drug and an anti-inflammatory for treating swelling and pain of the lungs, skin ulcers, and wounds. In the previous research, the novel and complex triterpenoid saponins with cytotoxic activities were isolated and identified.^{2,3} On our continuing study, three minor saponins obtained from the *n*-BuOH soluble part of the hot water extract from the stem bark of A. julibrissin showed significant inhibitory activity in vitro against human tumor cell lines. Isolation⁴ of the active extract led to the separation of compounds 1, 2, and 3. Their structures, named julibroside J_{29} (1), julibroside J_{30} (2), and julibroside J₃₁ (3), were determined by NMR spectra, including ¹H-¹H COSY, HSQC, and HMBC techniques. ⁵ Compounds 1, 2, and 3 displayed significant anti-tumor activities against PC-3M-1E8, MDA-MB-435, and HeLa cancer cell lines in vitro at 10 µM assayed by SRB and MTT methods.

Julibroside J_{29} (1), white powder, gave positive Molish reaction and Liebermann–Burchard reaction. The UV spectrum showed a maximum absorption at 216 nm. ESI-TOF-MS showed the quasi-molecular ion peak at m/z 1939 [M+H+K]⁺. Upon acidic hydrolysis with 2.0 M HCl, 1 gave an acacic acid lactone unit, which was identified with an authentic sample, and compound

1 also gave glucosamine hydrochloride, glucose, xylose, fucose, rhamnose, arabinose, and quinovose, which were identified by co-TLC with authentic samples.⁶ Its ¹H NMR spectrum showed seven methyl signals at δ 0.92 (3H, s), 1.01 (6H, s), 1.06 (3H, s), 1.14 (3H, s), 1.16 (3H, s), and 1.87 (3H, s), one olefinic proton signal at δ 5.57 (1H, br s), and sugar proton signals at δ 3.5– 6.0. ¹³C NMR spectrum showed two olefinic carbon signals at δ 123.0 and 143.3, suggesting that 1 was an oleanane type triterpenoid saponin. One- and twodimensional NMR techniques permitted assignments of ¹H and ¹³C NMR signals of 1 (Table 1). In a comparison of the ¹³C NMR signals for aglycone of 1 with those of known saponin prosapogenin-10 (4, Table 1),⁷ all signals due to the aglycone of 1 were almost superimposable with those of 4, indicating the aglycone of 1 was same as that of 4, which was acacic acid $(3\beta, 16\alpha, 21\beta$ trihydroxyolean-12-ene-28-oic acid) and its 3, 21-hydroxy groups and 28-carbonyl group carried a sugar moiety, respectively. ¹³C NMR spectrum gave eight anomeric carbon signals at δ 95.6, 99.3, 101.8, 103.3, 104.7, 105.7, 106.9, and 111.0, four methyl carbon signals at δ 17.2, 18.9, 18.8, and 23.6, a carbonyl signal at δ 170.1, and a typical amide carbon signal at δ 57.9. Eight anomeric proton signals at δ 4.83 (1H, d, J=8.0 Hz), 4.98 (1H, d, J=7.5 Hz), 5.02 (1H, d, J = 8.5 Hz), 5.07 (1H, d, J = 6.5 Hz), 5.32 (1H, d, J = 7.5 Hz), 5.87 (1H, s), 6.03 (1H, d, J = 8.0 Hz), and 6.26 (1H, br s) were assigned by direct correlation from HSQC spectrum. In the HMBC spectrum, the correlations were observed between δ 2.10 (3H, s), 8.9 (NH), and δ 170.1, indicating the presence of an acetamido sugar. Based on the ¹H and ¹³C NMR data of 1, the

Keywords: Albizia julibrissin; Julibroside J_{29} ; Julibroside J_{30} ; Julibroside J_{31} ; Anti-tumor activity.

^{*}Corresponding author. Tel.: +86 10 82801592; fax: +86 10 82801592; e-mail: nmechem@bjmu.edu.cn

 $\begin{array}{c} glc' \ (1 \rightarrow 2) \ glc \\ 1 \end{array}$

2

3

4

105.7

75.9

78.1

71.3

Carbon	1	2	3	4	5	6	Carbon	1	2	3	4	5
Aglycon							5			78.2		
C-1	38.7	39.3	38.9	38.7			6			61.9		
2	26.5	26.6	26.9	26.6			6 (1 (2 1				
3	88.8	88.8	88.5	88.2			fuc $(1 \rightarrow 6)$, 0	102.4	102.4	102.1	
4	39.3	39.4	39.6	39.4			1	103.3	103.4	103.4	103.1	
5	55.9	56.0	56.0	55.8			2 3	82.0 75.2	82.0 75.4	82.3 75.4	81.9 75.2	
5	18.6	18.4	18.6	18.5			4	72.5	72.2	72.6	72.0	
7	33.6	33.6	33.6	33.4			5	71.2	71.1	71.4	71.0	
3	40.1	40.1	40.1	40.0			6	17.2	17.2	17.3	17.0	
)	47.1	47.1	47.1	47.0					17.2	17.5	17.0	
10	37.0	37.1	37.1	36.9			$xyl (1 \rightarrow 2$					
11	23.7	23.8	23.8	23.8			1	106.9	107.2	107.0	106.7	
12	123.0	123.1	123.0	122.9			2	75.4	75.9	76.4	75.6	
13	143.3	143.3	143.4	143.2			3	78.0	78.5	77.6	77.8	
4	42.0	42.0	42.0	41.8			4	70.8	70.8	70.4	70.6	
5	35.8	35.9	35.9	35.7			5	67.1	67.1	67.2	67.0	
6	73.9	73.9	73.9	73.7			C-28					
7	51.5	51.6	51.6	51.5			glc"1	95.6	95.7	95.7	95.5	
8	40.9	40.8	40.9	40.8			2	76.8	76.8	76.8	78.9	
9 0	47.8 35.4	47.9 35.4	47.9	47.7			3	78.1	78.1	77.0	76.9	
	76.8	76.8	35.4 76.8	35.3 76.5			4	71.7	71.3	71.9	71.6	
1 2	36.3	36.4	36.0	36.2			5	78.9	79.0	78.9	78.2	
3	28.1	28.1	28.1	28.0			6	61.9	62.5	62.5	62.4	
4	17.0	17.2	16.9	17.0			rha $(1 \rightarrow 2$	2) ala#				
5	15.8	15.8	15.9	15.7			$1 \qquad 1$	2) gic 101.8	101.8	101.8	101.6	
6	17.3	17.3	17.2	17.2			2	70.5	70.5	70.7	70.3	
7	27.2	27.3	27.3	27.1			3	82.1	82.2	82.0	78.7	
8	174.4	174.4	174.4	174.3			4	79.0	79.1	79.0	84.2	
9	29.1	29.2	29.2	29.0			5	69.1	69.2	69.2	69.0	
0	19.1	19.1	19.1	19.0			6	18.9	18.9	18.9	18.7	
T^{a}							glc''' (1 \rightarrow					
Z-1	167.5	167.5	167.5	167.4			gic $(1 \rightarrow 1)$	105.7	105.8	105.9	105.5	
J-1	133.7	133.8	133.7	133.5			2	75.4	75.2	75.2	75.0	
	145.3	145.2	145.3	145.3			3	78.3	78.2	77.9	78.0	
	23.5	23.6	23.6	23.4			4	71.3	71.9	71.2	71.1	
	40.8	41.0	40.8	40.7			5	78.3	78.7	78.2	78.2	
	79.4	79.6	79.5	79.4			6	62.7	62.8	62.8	62.6	
	144.0	144.0	143.4	143.8			· ·	02.7	02.0	02.0	02.0	
	114.8	115.0	114.8	114.7			ara $(1 \rightarrow 4)$	/				
	56.2	56.3	56.2	56.1			1	111.0	111.1	110.9	110.8	
0	23.5	23.7	23.7	26.6			2	84.4	84.6	84.5	81.9	
					1		3	78.0	78.4	78.3	78.2	
-21 qui	00.2	100.4	00.2	00.1	xyl		4	85.4	85.5	85.4	85.2	
	99.3 75.4	100.4 75.3	99.3 75.5	99.1	100.9		5	62.5	62.9	62.8	61.8	
	78.3	73.3 78.5		75.3	75.9		a MT, mono	terpenoid	acid moie	tv.		
	77.0	71.2	78.3 76.8	78.2 76.7	78.8 72.0		,					
	72.5	67.1	70.8	72.4	67.4							
· ·	18.8	07.1	18.9	18.7	07.4							
			10.5	10.7			anomeric	configu	rations	of the	sugar r	noie
Sugar (C-							determine					
gle or gle-			4040	400 -			acetamido					
	104.7	104.8	104.9	106.5		104.7	α-configur	ation fo	r rhamn	ose and	and qu	U\
	57.9	57.9	82.8	75.5		82.6						
	75.8	75.9	76.9	78.2		76.8	spectrum					
	72.2	72.5	71.8	71.4		71.5	133.7, 145					
	77.4	77.5	77.1	77.3		77.4	bonyl carl					
	69.9	69.4	69.8	69.8		69.6	56.2, ¹ H 1					
C=O	170.1	170.0					at δ 1.49					
COCH ₃	23.6	23.7					(2H, s),	olefinic	proton	signal	at δ	7.03

105.5

75.7

78.0

71.1

eties were 2-deoxy-2ovose, and ¹³C NMR ignals at δ irated cararbon at δ ton signal at δ 4.70 (2H, s), olefinic proton signal at δ 7.03 (1H, t, J = 7.5 Hz), and a group of one-substituted olefin proton signals at δ 6.17 (1H, dd, J = 18.0, 11.0 Hz), 5.14 (1H, d, J = 11.0 Hz), and 5.35 (1H, d, J = 18.0 Hz), indicating 1 had one monoterpene moiety. The linkages among aglycone, sugars, and monoterpene moieties

6 78.0 62.3

103.2 82.0 75.2 72.4 71.0 17.2

106.8 76.3 77.8 70.6 67.0

> 95.5 78.9 76.8 72.0 78.2 62.6

101.7 70.3 78.8 84.2 69.0 18.7

105.5 75.0 77.9 71.1 78.2 62.6

110.8 81.8 78.2 85.2 61.8 were determined on the basis of HMBC experiments (Fig. 1). When the ¹H and ¹³C NMR signals of 1 were compared with those of 4, the ¹H and ¹³C NMR data of monoterpene moiety of 1 were in agreement with those of 4, and sugar signals were similar to those of 4, except for the appearance of 2-deoxy-2-acetamidoglucopyranosyl signals linked to C-3 instead of glucopyranosyl signals. Therefore, the structure of 1 was determined as 3-O-[β -D-xylopyranosyl-(1 \rightarrow 2)- β -Dfucopyranosyl- $(1 \rightarrow 6)$ - β -D-2-deoxy-2-acetamidoglucopyranosyl]-21-O-[(6S)-2-trans-2-hydroxymethyl-6-methvl-6-O-β-D-quinovopyranosyl-2,7-octadienoyl]-acacic acid-28-O- β -D-glucopyranosyl(1 \rightarrow 3)-[α -L-arabinofuranosyl- $(1 \rightarrow 4)$]- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$]- β -Dglucopyranosyl ester. Compound 1 was a new saponin, named julibroside J₂₉.

Julibroside J_{30} (2), white powder, gave positive Molish reaction and Liebermann-Burchard reaction. ESI-TOF-MS showed the quasi-molecular ion peak at m/z 1904 [M+H+NH₄]⁺. Upon acidic hydrolysis with 2.0 M HCl, 2 gave an acacic acid lactone unit, which was identified with an authentic sample, and 2 also furnished glucosamine hydrochloride, glucose, xylose, fucose, rhamnose, and arabinose, which were identified by co-TLC with authentic samples. In a comparison of the ¹³C NMR signals for aglycone and monoterpene moiety of 2 with those of 1 (Table 1), all signals due to the aglycone and monoterpene moiety of 1 were almost superimposable with those of 1, indicating that the aglycone and monoterpene moiety of 1 was same as that of 1. In the ¹³C NMR spectrum, the sugar signals of 2 were similar to those of 1, except for the appearance of xylopyranosyl signals instead of quinovopyranosyl signals. The xylopyranosyl signals in **2** were in agreement with those of (6S)-menthiafolic acid-6-O- β -D-xyloside (5)⁸ (Table 1), indicating that the xylose can be determined to be linked at C-6 of the monoterpenoic acid attached at C-21 of aglycone. Thus, the structure of **2** was established to be 3-O-[β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-fucopyranosyl-(1 \rightarrow 6)- β -D-2-deoxy-2-acetamidoglucopyranosyl]-21-O-[(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O- β -D-xylopyranosyl-2,7-octadienoyl]-acacic acid-28-O- β -D-glucopyranosyl(1 \rightarrow 3)-[α -L-arabinofuranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosyl ester. Compound **2** was a new saponin, named julibroside J_{30} .

Julibroside J_{31} (3), white powder, gave positive Molish reaction and Liebermann–Burchard reaction. The positive ESI-TOF-MS showed the quasi-molecular ion peak at m/z 2021 [M+H]⁺. Upon acidic hydrolysis with 2.0 M HCl, 3 gave an acacic acid lactone unit, which was identified with an authentic sample, and 3 also afforded glucose, xylose, fucose, rhamnose, arabinose, and quinovose, which were identified by co-TLC with authentic samples. In a comparison of the ¹³C NMR data of 3 with those of 1, all signals due to the aglycone, monoterpene moiety and sugar moieties attached at C-21 and C-28 in 3 were in agreement with those in 1. The sugar signals linked at C-3 in 3 were similar to those of 1, except for the appearance of two glucose signals instead of 2-deoxy-2-acetamidoglucose signals (Table 1). The ¹³C NMR data of the sugar moieties attached to C-3 of the aglycone were identical with those of prosapogenin-8 (6). Thus, compound 3 was elucidated as

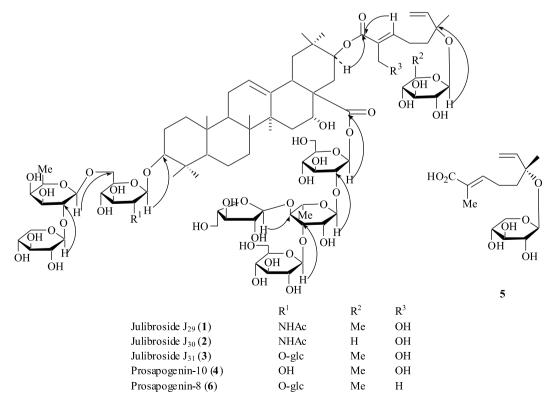


Figure 1. The structures of 1-6 and the HMBC of 1-3.

Table 2. The inhibitory rate to cancer cell lines (10 μ M)

Cancer cell lines	PC-3M-1E8	MDA-MB-435	HeLa	HL-60	BGC823	Bel-7402
1	85.37	84.47	94.90	25.35	52.90	67.14
2	84.98	75.68	91.65	25.59	46.66	57.49
3	80.85	80.41	83.48	39.33	15.16	46.61

Table 3. The inhibitory rate to cancer cell lines (10 μ M)

Cancer cell lines	PC-3M-1E8	Bel-7402	HeLa
Adriamycin	91.61	51.26	76.96
1	81.40	50.37	87.75
2	75.96	61.87	92.19
3	94.71	44.34	64.33

3-O-{β-D-glucopyranosyl-(1 \rightarrow 2)-[β-D-xylopyranosyl-(1 \rightarrow 2)-β-D-fucopyranosyl-(1 \rightarrow 6)]-β-D-glucopyranosyl}-21-O-[(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O-β-D-quinovopyranosyl-2,7-octadienoyl]-acacic acid-28-O-β-D-glucopyranosyl(1 \rightarrow 3)-[α-L-arabinofuranosyl-(1 \rightarrow 4)]-α-L-rhamnopyranosyl-(1 \rightarrow 2)]-β-D-glucopyranosyl ester. Compound 3 was a new saponin, named julibroside J_{31} .

Julibroside J_{29} (1), julibroside J_{30} (2), and julibroside J_{31} (3) showed marked inhibitory activities against PC-3M-1E8, MDA-MB-435, and HeLa cancer cell lines in vitro at 10 μ M assayed by SRB and MTT methods (Tables 2 and 3).

Acknowledgment

This project was supported by the National Natural Science Foundation of China (Grant No. 20432030).

References and notes

- Pharmacopoeia Committee of China. In *Chinese Pharmacopoeia*; Chemical Industry Press: Beijing, 2005; Vol. 1, p 97
- Liang, H.; Tong, W. Y.; Zhao, Y. Y.; Cui, J. R.; Tu, G. Z. Bioorg. Med. Chem. Lett. 2005, 15, 4493.
- 3. Zou, K.; Zhao, Y. Y.; Tu, G. Z.; Cui, J. R.; Jia, Z. H.; Zhang, R. Y. Carbohydr. Res. 2000, 324, 182.
- 4. Extraction and isolation. The air-dried powder of the stem bark of *A. julibrissin* Durazz. (20 kg) was sliced into chips, extracted three times with boiling water, and concentrated under reduced pressure. The water extract was partitioned with *n*-BuOH and water. The *n*-BuOH extract (1200.0 g) was subjected to silica gel column chromatography and eluted with CHCl₃-MeOH-H₂O (65:35:10, v/v) to yield fractions A and B. Fraction A was chromatographed over HP-20 macroporous resin column by eluting gradient solvent system (30% MeOH → 90% MeOH) to give fractions 1–6. Fraction 4 was subjected to Rp C₁₈ silica gel column chromatography (60 → 80% MeOH) and preparative HPLC (74:26 MeOH-H₂O, 2.8 mL/min, 216 nm detection) to afford 1 (30 mg), 2 (25 mg), and 3 (20 mg).
- 5. Julibroside J₂₉ (1), White powder, ESI-TOF-MS m/z 1939 $[M+H+K]^+$; 1H NMR (500 MHz, py- d_6): δ 0.92 (3H, s, CH₃), 1.01 (6H, s, CH₃), 1.06 (3H, s, CH₃), 1.14 (3H, s, CH₃), 1.16 (3H, s, CH₃), 1.87 (3H, s, CH₃), 5.02 (1H, d, J=8.5 Hz, glc H-1), 8.9 (NH), 4.98 (1H, d, J=7.5 Hz, fuc H-1), 5.07 (1H, d, J = 6.5 Hz, xyl H-1), 6.03 (1H, d, J = 8.0 Hz, glc' H-1), 5.87 (1H, s, rha H-1), 6.26 (1H, br s, araf H-1), 5.32 (1H, d, J = 7.5 Hz, glc" H-1), 4.83 (1H, d, J = 8.0 Hz, qui H-1), 2.10 (3H, s, COCH₃), 1.75 (3H, d, J = 5.5 Hz, rha H-6), 1.46 (3H, d, J = 6.0 Hz, fuc H-6), 1.57 (3H, d, J = 5.0 Hz, qui H-6), 7.03 (1H, t, J = 7.5 Hz, MT H-3), 6.17 (1H, dd, J = 11.0, 18.0 Hz, MT H-7), 5.14 (1H, t, J = 11.0 Hz, MT H-8a), 5.35 (1H, t, J = 18.0 Hz, MT H-8b), 1.49 (3H, s, MT H-10). ¹³C NMR (125 MHz, py- d_6) data, see Table 1. Acid hydrolysis of 1: A small amount of 1 was hydrolyzed by 2 M HCl in 100 °C for 6 h. After filtration of the reaction mixture, the filtrate was neutralized with BaCO3 to give a residue, which was identified as glucosamine hydrochloride, glucose, xylose, fucose, rhamnose, arabinose, and quinovose on TLC (2propanol-H₂O, 9:1), reagent: 20% H₂SO₄. Julibroside J₃₀ (2), white powder, ESI-TOF-MS m/z 1904 [M+H+NH₄]⁺, ¹H NMR (500 MHz, py- d_6): δ 0.94 (3H, s, CH₃), 1.03 (6H, s, CH₃), 1.06 (3H, s, CH₃), 1.16 (3H, s, CH₃), 1.17 $(3H, s, CH_3)$, 1.89 $(3H, s, CH_3)$, 5.03 (1H, d, J = 8.0 Hz,2-NHAc-glc H-1), 5.00 (1H, d, J = 7.5 Hz, fuc H-1), 5.08 (1H, d, J = 6.5 Hz, xyl H-1), 6.06 (1H, d, J = 8.0 Hz, glc' H-1), 5.95 (1H, s, rha H-1), 6.28 (1H, br s, araf H-1), 5.37 (1H, d, J = 8.5 Hz, glc" H-1), 4.84 (1H, d, J = 7.5 Hz, xyl H-1), 2.11 (3H, s, COCH₃), 1.48 (1H, d, J = 6.5 Hz, fuc H-6), 1.78 (3H, d, J = 6.0 Hz, rha H-6), 7.03 (1H, t, J = 7.4 Hz, MT H-3), 6.17 (1H, dd, J = 11.0, 18.0 Hz, MT H-7), 5.18 (1H, t, J = 11.0 Hz, MT H-8a), 5.39 (1H, t, J = 18.0 Hz, MT H-8b), 1.43 (3H, s, MT H-10). 13 C NMR (125 MHz, py- d_6) data, see Table 1. Julibroside J₃₁ (3), White powder, ESI-TOF-MS m/z 2021 $[M+H]^+$, 1H NMR (500 MHz, py- d_6): δ 0.96 (3H, s, CH₃), 1.01 (3H, s, CH₃), 1.06 (3H, s, CH₃), 1.13 (3H, s, CH₃), 1.14 (3H, s, CH₃), 1.26 (3H, s, CH₃), 1.86 (3H, s, CH₃), 4.87 (1H, d, J = 7.0 Hz, glc H-1), 4.95 (1H, d, J = 8.0 Hz, fuc H-1), 5.04 (1H, d, J = 7.0 Hz, xyl H-1), 5.32 (1H, d, J = 8.0 Hz, glc' H-1), 6.04 (1H, d, J = 8.0 Hz, glc'' H-1, 5.84 (1H, br s, rha H-1), 6.25(1H, br s, araf H-1), 5.40 (1H, d, J = 7.5 Hz, glc" H-1), 4.84 (1H, d, J = 8.0 Hz, qui H-1), 1.47 (3H, d, J = 6.5 Hz, fuc H-6), 1.77 (3H, d, J = 5.5 Hz, rha H-6), 1.57 (3H, d, J = 4.5 Hz, qui H-6), 7.06 (1H, t, J = 7.4 Hz, MT H-3), 6.18 (1H, dd, J = 11.0, 18.0 Hz, MT H-7), 5.14 (1H, t, J = 11.0 Hz, MT H-8a), 5.39 (1H, t, J = 18.0 Hz, MT H-8b), 1.43 (3H, s, MT H-10). ¹³C NMR (125 MHz, py-d₆) data, see Table 1.
- Okada, Y.; Shibata, S.; IKekawa, T.; Javellana, A. M. J.; Kamo, O. *Phytochemistry* 1987, 26, 2789.
- Ikeda, T.; Fujiwara, S.; Araki, K.; Kinjo, J.; Nohara, T.; Miyoshi, T. J. Nat. Prod. 1997, 60, 102.
- Kiuchi, F.; Gafur, M. A.; Obata, T.; Tachibana, A.; Tsuda, Y. Chem. Pharm. Bull. 1997, 45, 807.